Relaxin protects against renal ischemia-reperfusion injury.
نویسندگان
چکیده
Relaxin, a pregnancy hormone, has antiapoptotic and anti-inflammatory properties. The aim of this study was to determine the effects of relaxin on ischemia-reperfusion (IR)-induced acute kidney injury. Male rats underwent unilateral nephrectomy and contralateral renal IR (45 min of renal pedicle clamping). Rats were divided into three groups: 1) sham group, 2) IR group, and 3) IR-RLX group (rats treated with relaxin before ischemia). In this group, relaxin was infused at 500 ng/h via subcutaneous osmotic minipump for 24 h beginning 2 h before renal ischemia. At 24 h after reperfusion, renal function was assessed and kidneys were removed for analysis. There was no significant difference in blood pressure among the three groups. IR increased plasma levels of creatinine and urea nitrogen, and relaxin provided protection against the increases in these two parameters. Relaxin significantly decreased plasma TNF-α levels and renal TNF receptor 1 mRNA expression, compared with the IR group. Semiquantitative assessment of the histological lesions showed marked structural damage in IR rats compared with the IR-RLX rats. RLX significantly reduced apoptotic cell counts compared with the IR group. Overexpression of caspase-3 observed in the IR kidneys was reduced in the IR-RLX group. The results demonstrated that relaxin provided protection against IR-induced renal injury by reducing apoptosis and inflammation.
منابع مشابه
Acute treatment with relaxin attenuates the injury/dysfunction induced by renal ischemia/reperfusion injury.
Although preclinical and clinical studies have demonstrated that relaxin (RLX) ameliorates impaired renal function by exerting antifibrotic and regenerative effects, its role in renal ischemia/reperfusion (I/R) injury has never been investigated. Using a well-known rat model of 1 h bilateral renal artery occlusion followed by 6 h reperfusion, we investigated the effects of human recombinant RLX...
متن کاملHydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats
Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...
متن کاملThe protective activity of noscapine on renal ischemia–reperfusion injury in male Wistar rat
Objective(s):Bradykinin is a part of the kinin-kallikreinsystem which is involved in ischemia-reperfusion injury via B1 and B2 receptors.Noscapine is a non-competitive antagonist of bradykinin receptors. Noscapine has been reported to to be able to protect some organs against ischemia-reperfusion injury but its effect on renal ischemia-reperfusion injury (RIR) in rats is unknown. Therefore, the...
متن کاملCoenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression
Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...
متن کاملOrexin-A Improves Hepatic Injury Following Renal Ischemia Reperfusion in Rats
Introduction: Orexins are novel neuropeptides that are localized in neurons in the lateral hypothalamus. They are implicated in a wide variety of physiological functions. Orexin peptides and receptors are found in many peripheral organs such as kidneys. It has been demonstrated that exogenous orexin-A can induce protective effects against ischemia–reperfusion injury in many organs. The goal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 305 8 شماره
صفحات -
تاریخ انتشار 2013